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Summary—l’he Suhl and Walker approximation for the propa-

gation constant of the quasi-TEM mode in ferrite-filled parallel

plane waveguide has been applied to the ferrite-filled coaxial line.

The approximation is compared to exact solutions for a coaxial line

filled with a Iossless ferrite with close agreement.

The propagation constant of the quasi-TEM mode is determined

by measuring the complex reflection coefficient of a plane ferrite-air

interface. The a and (3 are compared to the Suhl and Walker ap-

proximation with losses, and qualitative agreement is found.

In order to relate the measured values to the propagation con-

stants, the boundary value problem of the reflection from a plane

ferrite-air interface is investigated. Expressions are derived which

relate the reaf and imaginary parts of the propagation constant in the

ferrite to an approximation to the complex reflection coefficient of

the TEM mode in the empty line.

INTRODUCTION

A

NUMBER OF AUTHORS have described de-

vices constructed by completely filling a coaxial

line with a ferrite and applying an axial magnetic

field. These devices are proposed for use as filters [1],

switches [2 ]– [4 ], and phase shifters [5], [6] at S and L

bands. Since no theoretical results were available for the

ferrite-filled coaxial line,l these authors interpreted the

behavior of their devices by means of the Suhl and

Walker approximation [7] for the closely spaced, ferrite-

filled, parallel plane waveguide.

The Suhl and Walker approximation was derived by

considering a parallel plane waveguide filled with a. loss-

less ferrite biased by a magnetic field in the direction of

propagation. When the spacing between the conducting

planes is small, the propagation constant for the quasi-

TEM mode is given by a simple expression. The argu-

ment for applying the results of an analysis of the

parallel plane waveguide to the coaxial waveguide is

that the coaxial line can be “unrolled” [4] to give a

parallel plane system.

Kales [8] and Epstein [g] have presented theoretical

techniques for solving the boundary value problem.
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Kales did not consider the ferrite-filled coaxial line in de-

tail, but Epstein developed a determinantal equation

for the propagation constant. We have solved the de-

terminantal equation for the quasi-TEM mode by

numerical methods.

The deviation of the approximation from the exact

solutions is presented as a function of magnetic field for

a given spacing between the conductors and as a func-

tion of spacing for a given magnetic field.

The propagation constant in a ferrite filled coaxial line

is measured for several frequencies as a function of

magnetic field, The technique used to measure the

propagation constant is to observe the reflection of the

TEM mode from a plane ferrite-air interface. The re-

sults of the measurements are then compared to the

Suhl and Walker approximation when loss terms are in-

cluded.

The fields of the quasi-TEM mode at a ferrite-air

interface are expanded in terms of the empty coaxial

line modes. The relation between the propagation con-

stant in the ferrite and an approximation to the TEM

mode reflection coefficient at the interface is found.

THEORETICAL SOLUTIONS FOR THE

PROPAGATION CONSTANT

The general field equations for any mode in a ferrite-

filled coaxial line are given in Appendix I. Setting n= O

in the general field equations yields the expressions for

the quasi-TEM mode and all higher symmetrical modes.

The propagation constant of the quasi-TEM mode is

found by solving the determinantal equation for spac-

ings between the inner and outer conductors so small

that all higher modes are cut off.

The tangential electric fields for the quasi-TEM mode

and all higher symmetrical modes are

E; = & S?{ CiYO(Sir) + CiFO(Si~) }
——

jel

Ed=~
jp(s? – u) .—

.S,{ C“vo’(s,?’) + ci~{(sy) } . (1)
i=l yk

If the inner radius is RI and the outer radius is R,, the

boundary conditions are that the tangential electric

field be zero at r= RI and r= R,. Applying the boundary

conditions yields a set of four linear, homogeneous

equations in the coefficients C; and ~i. In order to find
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nontrivial solutions, the determinant of the coefficients

of the Ci’s and ~,’s must be equal to zero. The determi-

nantal equation is therefore

,s,’ YO(S,RJ SI’TO(SJ?I) S2’ VO(S2R1) S2’TO(S,R,)
I

S12170(S1R2) S12170(S1R2) S2’ Fo(sm,) Sj2~O(SZR,)

= (),.

(S,2 – u)Sl 17,’(SIR,) (S,’ -- u) SITO’(SIRI) (SZ2 – a)S~ Y“’(SZRI) (S22 – a)SZ~o’(SZRl)

(S,2 – a) S, Y,’(S@,) (S12 -- a)S170’(SIR.J (S,2 – a)S’YO’(SzRJ (S22 – a)S~~o’(SJ?.J I

(2)

Eq. (2) is a transcendental equation in the propaga-

tion constant since the separation constants, Sl and S2,

are functions of the material parameters and the

propagation constant. The zeros of the determinant will

occur for the. values of the propagation constants of the

symmetrical modes.

It should be noted that there are two false zeros of (2).

If either S1 = O or S’= O, this equation is identically zero.

However, except for discrete values of RI and RZ, the

C%’s and ~,’s must be zero to satisfy the boundary condi-

tions. These false zeros correspond to Kales’ trivial solu-

tions.

For the lossless case, the separation constants are either

pure real or pure imaginary. In the former, the un-

modified Bessel functions are used and in the latter, the

modified Bessel functions. When losses are included, the

separation constants become complex, and thus each

I’.(x) and ~.(x) also becomes complex. No attempt was

made to consider this case exactly.

INurnerical solution of (2) was carried out on an IBM

709 digital computer. The material parameters for a

commercially available ferrite, Trans-Tech TT-414,

were used (e, = 11.5, 47rJf, = 680 Gallss), the inner and

outer radii were chosen for 50 ohm coaxial line

(R1 = 0.125 inch and RJR1 = 2.25), and the frequency

was 1.5 Gc. The computations were made by holding

the frequency, material parameters, geometry, and

magnetic field constant and computing values of (2)

for small steps of propagation constant. The magnetic

field and propagation constant were normalized to the

resonant field and j~~~e respectively. The solutions

were found by noting the interval of propagation con-

stant in which the determinant changed sign. Then the

Suhl and Walker approximation, given by

Yn=[p’; ‘211’2 (3)

and shown in Fig. 1, was compared to the exact solu-

tions. Exact solutions were calculated as a function of

magnetic field for constant spacing between conductors

and as a function of spacing for constant magnetic

field.

When R,= 0.125 inch and RJR, = 2.25, t’he Sub] and

Walker approximation was found to deviate from the

exact solutions by 3.7 per cent for H.= 0.7.5 and b>- less

than 0.03 per cent for H.= 3.0.

When Rl= 0.125 inch and H.= 1.2, the Suhl and

W7alker approximation was found to deviate from the

exact solutions by less than 0.5 per cent for R2/R1= 2.25

and by 6 per cent for RJRl= 6.5. The latter spacing is

that for which higher order symmetrical modes lbegin to

appear. For the same inner radius and for JYn = 2.0, the

Suhl and Walker approximation deviated from the

exact solutions by less than 0.2 per cent for RJRl= 2.25

and by less than 0.75 per cent for RZ/Rl = 7.5, the spac-

ing at which higher symmetrical modes appear for this

magnetic field.

The results of the numerical analysis show that the

Suhl and Walker equation is a close apprc}ximation to

the propagation constant of the quasi-TIE M mode for

the Iossless case. The approximation is especially valid

for magnetic fields much larger than the resonant field,

and for close spacing between inner and outer con-

ductors.

However, losses are always present to some extent,

and, in the vicinity of the resonant field, the loss terms

may become large. Therefore, as a first approximation

to the 10SSY case, phenomenological loss terms will be

placed in the Suhl and Walker equation.

When losses are present, the elements clf the ,u tensor

become complex.

~ = p? — jptf

k = k’ – jk”. (4)

The real and imaginary parts can be calculated by

means of the expressions given by Lax and Button (see

page 154 [10]).

When the losses as given in (4) are substituted into

(3), the phase constant behaves as in Fig. 2. The result

for a linewidth of 100 oersteds (the nominal Iinewidth of

TT-414 ferrite measured at 3 Gc) is cornlpared to the

lossless approximation. The effect of placing lCJSSterms

in (3) eliminates the low-field cutoff region. When larger

linewidths are used, the P-H curve is smoothed out.
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NORMALIZEO MAGNETIC FIELO

Fig. l—The Suhl and Ik’alker approximation for the lossless case.

NORMALIZED MAGNETIC FIELD

Fig. 2—The Suhl and Walker approximation with losses.
Linewidth = 100 oersteds.

EXPERIMENTAL MEASUREMENT OF THE

PROPAGATION CONSTANT

The experimental investigation was conducted to

find the range of magnetic fields in which the Suhl and

Walker approximation describes the behavior of a co-

axial line filled with a Iossy ferrite. The propagation con-

stant was measured in a ferrite-filled section and com-

pared to the approximation.

Two techniques that were tried were: 1) measuring

the standing wave in a section of ferrite-filled line, and

2) observing the resonances of a ferrite-filled coaxial

transmission cavity. These techmques failed when large

losses were present.

The chosen experimental technique, used to measure

the propagation constant, was to observe the reflection

of the TEM mode from a plane ferrite-air interface. A

ferrite sample with plane endfaces was placed in the

coaxial line with a slotted line two or more wavelengths

from the sample. The VSWR ‘and position of the mini-

mum were measured in the slotted line as the magnetic

field was varied. In Appendix II the relations between

the approximate complex TEM mode reflection coeff-

icient of the interface and the propagation constant of

the quasi-TEM mode in the ferrite are derived. The

magnitude and angle of the reflection coefficient were

I VTVMHAW----T
I

I KC HMICROWAVE
SQCARE

WAVE
SOURCE 1 p.jJ.J& \\~ \

I

*oNTRoLJj-
FIELO

Fig. 3—Experimenta1 apparatus.
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&
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.I.i,

reduced by means of the results of Appendix II, (21)

and (22), to yield the real and imaginary parts of the

quasi-TEM mode propagation constant in the ferrite.

The results from this method were compared to the

wavelengths measured using- a ferrite-filled coaxial

transmission cavity, and agreement was found.

Since multiple reflections would introduce errors, it

was necessary to terminate the ferrite-filled section. The

method of termination was to place only the first end-

face of the ferrite sample in the magnetic field. The

sample, which was 19 cm long, was allowed to protrude

from the end of the biasing solenoid. Therefore, the

terminal end of the ferrite was placed in low-field, high-

10SS operation. The absence of multiple reflections was

checked by changing the position of a sliding short in the

line past the terminal end of the ferrite. No significant

variation of the VSWR in the line in front of the sample

was noted.

The experimental investigation was carried out for

frequencies in the range of 0.6 to 2.0 Gc. The coaxial

line had an inner diameter of $ inch and an outer

dialmeter of 9/16 inch and was filled with Trans-Tech

type TT-414 ferrite. The microwave source was 1000

cycle square wave modulated, and the receiving system

included a tuned, 1000 cycle narrow-band amplifier.

Fig. 3 shows the experimental arrangement.

The current which produced the biasing field was

controlled by a GE 1.5 kw amplidyne with appropriate

feedback. This arrangement made it possible to vary the

current in the load from O to 10 amperes by changing

the current in the control windings of the amplidyne

from O to 15 ma.

The axial magnetic field was varied from O to 1000

oersteds. This biasing field was produced by a solenoid

18 inches long wound on a water jacket with an inner

diameter of 2 inches. A current of about 10 amperes was

necessary to produce a field of 1000 oersteds. Sustained
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operation at high currents was possible only when the

solenoid was packed in ice.

In order to minimize the effects of incomplete satura-

tion, the ferrite was saturated by first raising the mag-

netic field to 1000 oersteds and then reducing it to zero.

The field was then increased in steps of 50 oersteds and

the complex reflection coefficient was measured. The

results for a typical run are shown on a Smith chart in

Fig. 4.

As the magnetic field increases from zero to well above

resonance, the VSWR first increases, then decreases, to

the neighborhood of 1.0, and finally increases again.

The phase of the complex reflection coefficient changes

in a counterclockwise direction on the Smith chart as

the magnetic field increases. The initial and final phases

varied as a function of frequency. In most cases, the

initial phase moved clockwise as the frequency was

raised.
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Fig. 7—(a) Comparison of measured a to SuhI and Walker approxi-
mation. (b) Comparison of measured (3 to Suhl and Walker
approximation.

The data were reduced by means of (21) and (22) to

find the real and imaginary parts of the propagation

constant in the ferrite. The attenuation constant is

shown in Fig. 5 and the phase constant in Fig. 6. As

expected, the magnetic field for maximum loss and the

magnetic field for most rapid change of the phase con-

stant were found to increase with increasing frequency.

The results for 1.0 Gc are compared to the 10SSY Suhl

and Walker approximation in Figs. 7(a) and 7(b).

TT-414 ferrite has a Iinewidth of 100 oersteds at S band.

However, at 1.0 Gc, in a coaxial line, the ferrite behaves

as if the linewidth were about 300 oersteds.

The experimental a, shown in Fig. 7(a), is larger than

the approximate theoretical a. Both curves extend over

the same range of magnetic fields, though the experi-

mental curve has a narrower maximum at a slightly
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higher magnetic field than the approximate curve.

The phase constant w shown in Fig. 7(b). In the low

field region, below 200 oersteds, the approximate and

experimental values are in substantial agreement. The

experimental curve shows a rapid increase in ~ from 200

to 350 oersteds, whereas the approximate theory pre-

dicts a rapid increase between 300 and 400 oesteds.

The experimental data above 400 oersteds decreases

with a slope that approaches the theoretical slope.

CONCLUSIONS

The theoretical solutions for the propagation constant

of the quasi-TEM mode for the Iossless case show that

the Suhl and Walker equation is a close approxima-

tion to this case. However, the propagation constant

measured experimentally shows qualitative agreement

with the lossless approximation only for magnetic fields

several times the resonant field. When loss terms

are placed in the approximation, the result agrees

qualitatively with the experimental results for all mag-

netic fields as in Fig. 7, though quantitative disagree-

ment is noted.

Several ferrite-filled coaxial line devices were referred

to in the introduction of this paper. The phase shifters,

being transmission devices, are operated in ranges of

magnetic field for which a is small. For these magnetic

fields, the lossless approximation holds, and can be ex-

pected to produce good results. The switches are

operated between ranges of magnetic field for which a is

large, and fields for which a is small. Since the range of

fields in which the lossless approximation predicts cutoff

is very nearly the same as the range in which the 10SSY

approximation predits large a and in which themeasured

a is large, the lossless approximation can be used success-

fully to design switches.

APPENDIX 1

GENERAL FIELD EQUATIONS EOR ~ F~RRITE-

FILLED CO.AXIAL LINE

The theoretical solutions for ferrite-filled cylindrical

waveguide with axial magnetization are well known

[8]- [11 ]. The special case of the completely filled co-

axial line is presented explicitly by Epstein [9] and is

implied by Kales [8]. The equations for the fields in a

ferrite-filled coaxial line with axial magnetization are

given below in Kales’ notation, and for convenience, the

separation constants S1 and .52 are defined as the square

roots of Kales’ separation constants. The functions

In(x) and ~n(x) are Bessel functions of the first and

second kinds respectively.

—.—— ———
a+cf~(a —c)2+4bd

s? =
2

where f?2= +U2,M, @2= +u~ke, and p, k, and pZ are ele-

ments of w tensor.

APPENDIX II

AN APPROXIMATION TO TFIE R~FLECTIION OF THE

TEM L!IODE I?ROM A FERRITE-AIR IN-rERFACE

A plane ferrite-air interface, S, is located at z = O in a

coaxial line as shown in Fig. 8. The ferrite is saturated

by a z-directed magnetic field, and a TEM wave is inci-

dent upon the interface in the empty coaxial line. The

ferrite-filled section is assumed to be terminated with

no reflections.

At the surface S, the tangential fields in the ferrite will

be expressed in terms of the tangential cc,mponents of

the empty coaxial line modes. The product of the fields

with the TEM mode conjugate will be fcmrned, and the

fields will be integrated across the surface. The co-

efficients of the TEM mode, AO and BO, wi]ll be approxi-

mated by neglecting all modes in the ferrite except the

quasi-TEM mode. The approximate reflection co-

efficient of the TEM mode will be expressed in terms of

A ~ and BO. The relationship between the approximate
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s

w--l

IL-AIR=.I+FERR,TEJ
Fig. 8—A plane ferrite-air interface in a coaxial line.

form of the complex reflection coefficient and

propagation constant of the quasi-TEM mode in

ferrite will be established.

the

the

At the surface S, the tangential componets of ~ and

77 must be continuous. Since the incident wave is sym-

metrical, and since the interface introduces no asym-

metries, only symmetrical modes will be excited in the

ferrite and reflected from the interface. The superscript

~ will refer to the fields in the ferrite, and the subscript

twill denote the tangential components.

~ T,,(zn’), = (A,+ Bo)(adt + 5 Mat (5)
n=l .=1

~ T.(77J), = (Ao – Bo)(nmdt – S M~n)t. (6)
n= 1 ~=1

We form the scalar product of both sides of (5) with

(I&ti,),* and integrate across S.

The tangential component of the TEM electric field is

the ~ component.

(8)

Eq. (8) is substituted into (7). We integrate the right-

hand s~de, and perform the @ integration on the left-

hand side.

Since the tangential component of the TEM magnetic

field is the @ component, which can be expressed as

H$= E,/dpO/~O, (6) leads to a similar result.

Therefore (E)), and (W) ~ are

(E’), = – --yf b S,(c, Yo’(s,?’) – ci~o’(sif’))
i=1

Eqs. (11) show that (ZP)o= [@ef/Tf ] (IY),. Therefore,

(9) and (10) can be written in terms of the integral,

In =
J

“(E,:),d~.

El

2?r -
co

Since this problem leads to an infinite set of simultane-

ous linear equations [9], we shall make an approxima-

tion by neglecting all modes in the ferrite except the

quasi-TEM mode. The results obtained by applying the

approximate form of the reflection coefficient to experi-

mental data are consistent with independent measure-

ments of the wavelength in a ferrite-filled transmission

cavity.

Solving for AO yields

—

and solving for BO yields

—

(13)

(14)

The approximate reflection coefficient R, is given by

the ratio of BO to A,.

Multiplying the numerator and denominator by -yf and

dividing by j@poef, (15) becomes

To find the symmetrical mode field expressions we

set n equal to zero in the equations in Appendix I.
(16)
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Eq. (16) gives the approximate reflection coefficient

of the TEM mode from a plane ferrite-air interface for

the quasi-TEM mode in the ferrite. ~yfm is the propaga-

tion constant of the mode in the ferrite normalized to

the propagation constant of the TEM mode in a coaxial

line filled with a dielectric with the same dielectric con-

stant as the ferrite. No assumptions have been made re-

regarding the losses in the development of (16).

We will now find the relationship between the real

and imaginary parts of the propagation constant and

the complex reflection coefficient. When losses are

present the propagation constant in the ferrite is given

by ~= a +j/?. Dividing both sides by jw~pOej and

normalizing a and P with respect to w~poef leads to

‘)’. = – j% + on. (17)

We substitute (17) into (16).

(18)

lVhen (18) is rationalized, the real and imaginary parts

of the TEM mode reflection coefficient are given by

(19)

(20)

Eq. (19) can be solved for a,

{

fir,’ – e, – (~. + &j’R, 11’
a.=+ — ) (21)

R, –-l

Substituting (21) into (20) and solving for ~n, leads to

(22)

Eqs. (21) and (22) can be used to find the propaga-

tion constant of the quasi-TEM mode in a ferrite-filled

coaxial line by measuring the complex reflection co-

efficient of the TEM mode from a plane ferrite-air inter-

face.

ACKNQWLEDGM~N~

The authors would like to express their appreciation

for the assistance given them by the Northwestern

University Computer Center while preparing the nu-

merical portion of this work.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

J. H. Burgess, “Ferrke-tuuable filter for use in S’-band,” PROC.
IRE, vol. 44, pp. 1460–1462; October, 1956.
C. M. Johnson and J. C. IViltse, “A broad-band ferrite reflective
switch, ” IRE TRANS. ON MICROWA17E THEORY AND TECHNIQUES,
VO1. MTT-8, pp. 466–467 ; July, 1960.
R. L. Booth, ‘lA broad-band coaxial ferrite switch, ” IRE TRANS.
ON MICROWAVE THEORY AND TECHNIQUES, vol. MT’T-9, pp.
452–453; September, 1961.
C. E. Fay, “Ferrite switches k coaxial or strip transmission
line, ” IRE TRANS. ON MICROWAVE THEORY A SD TECHNIQUES,
vol. MTT-107 pp. 455–4S8; November, 1962.
A. S. Boxer! S. Hershenov, and E. F. Landry, “A high-power
coaxial ferrite phase shifter, ” IRE TRANS. ON MICROWAVE
THEORY AND TIZCHNIQUES, vol. MTT-9, p. 577; November,
1961.
A. S. Boxer and R. S. McCarter, “Coaxial ferrite phase shifter for
high power applications, ” -T. Ap)l. Plzys., vol. 33, pp. 1263-
1~64: ~~arch, ~962.

H. Suhl and L. R. Walker. “ToDics in guided wave rxoDazation
through gyromagnetic media, ” it. 3, Sell .Sys. Tech: J“.: 1%1. 33,
pp. 1133–1 +94; September, 1954.
P. S. Epstein, “Theory of wave propagation in a gyromagnetic
medium, ” Rev. Mod, P,h2s., vol. 28,. pp. 3–17; January, 1956.
hI. L. Kales, “Modes m waveguldes containing ferrites, ” -T.
Appl. Pkys., vol. 24, pp. 602-608; May, 1953.
B. Lax and K. J. Button, “Microwave Ferrites and Ferri-
marnetirs. ” McGrawHill Book Co.. Inc.. New York. N. Y..,,
p. ~54, p~: 399-414; 1962.
R. N. Ghose, “Microwave Circuit Theory ancl .!nalysis, ” Mc-
Graw-Hill Book Co., Inc., New York, N. Y., pp. 375-394;
1963.


